Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor
نویسندگان
چکیده
We employ new global space-based measurements of atmospheric methanol from the Tropospheric Emission Spectrometer (TES) with the adjoint of the GEOS-Chem chemical transport model to quantify terrestrial emissions of methanol to the atmosphere. Biogenic methanol emissions in the model are based on version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1), using leaf area data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOS-5 assimilated meteorological fields. We first carry out a pseudo observation test to validate the overall approach, and find that the TES sampling density is sufficient to accurately quantify regionalto continental-scale methanol emissions using this method. A global inversion of two years of TES data yields an optimized annual global surface flux of 122 Tg yr−1 (including biogenic, pyrogenic, and anthropogenic sources), an increase of 60 % from the a priori global flux of 76 Tg yr−1. Global terrestrial methanol emissions are thus nearly 25 % those of isoprene (∼ 540 Tg yr−1), and are comparable to the combined emissions of all anthropogenic volatile organic compounds (∼ 100–200 Tg yr−1). Our a posteriori terrestrial methanol source leads to a strong improvement of the simulation relative to an ensemble of airborne observations, and corroborates two other recent top-down estimates (114–120 Tg yr−1) derived using in situ and space-based measurements. Inversions testing the sensitivity of optimized fluxes to model errors in OH, dry deposition, and oceanic uptake of methanol, as well as to the assumed a priori constraint, lead to global fluxes ranging from 118 to 126 Tg yr−1. The TES data imply a relatively modest revision of model emissions over most of the tropics, but a significant upward revision in midlatitudes, particularly over Europe and North America. We interpret the inversion results in terms of specific source types using the methanol : CO correlations measured by TES, and find that biogenic emissions are overestimated relative to biomass burning and anthropogenic emissions in central Africa and southeastern China, while they are underestimated in regions such as Brazil and the US. Based on our optimized emissions, methanol accounts for > 25 % of the photochemical source of CO and HCHO over many parts of the northern extratropics during springtime, and contributes ∼ 6 % of the global secondary source of those compounds annually.
منابع مشابه
Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions
Methanol retrievals from nadir-viewing spacebased sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES) on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric ...
متن کاملDirect top-down estimates of biomass burning CO emissions using TES and MOPITT versus bottom-up GFED inventory
[1] In this study, we utilize near-simultaneous observations from two sets of multiple satellite sensors to segregate Tropospheric Emission Spectrometer (TES) and Measurements of Pollution in the Troposphere (MOPITT) CO observations over active fire sources from those made over clear background. Hence, we obtain direct estimates of biomass burning CO emissions without invoking inverse modeling ...
متن کاملGlobal Near-Real-Time Estimates of Biomass Burning Emissions using Satellite Active Fire Detections
We present a new technique for generating daily global estimates of biomass burning emissions suitable for use in models forecasting atmospheric chemical composition and air quality. We combine ecosystem-dependent carbon fuel databases, fire weather severity estimates, and near-real-time satellite fire detections from the MODIS instruments to estimate the amount of carbon released from active f...
متن کاملTropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: validation and model evaluation
The wealth of air quality information provided by satellite infrared observations of ammonia (NH3), carbon monoxide (CO), formic acid (HCOOH), and methanol (CH3OH) is currently being explored and used for a number of applications, especially at regional or global scales. These applications include air quality monitoring, trend analysis, emissions, and model evaluation. This study provides one o...
متن کاملDecadal record of satellite carbon monoxide observations
Atmospheric carbon monoxide (CO) distributions are controlled by anthropogenic emissions, biomass burning, transport and oxidation by reaction with the hydroxyl radical (OH). Quantifying trends in CO is therefore important for understanding changes related to all of these contributions. Here we present a comprehensive record of satellite observations from 2000 through 2011 of total column CO us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014